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AbstractÐA very interesting recent development in data compression is the Burrows-Wheeler Transformation [1]. The idea is to


permute the input sequence in such a way that characters with a similar context are grouped together. We provide a thorough analysis


of the Burrows-Wheeler Transformation from an information theoretic point of view. Based on this analysis, the main part of the paper


systematically considers techniques to efficiently implement a practical data compression program based on the transformation. We


show that our program achieves a better compression rate than other programs that have similar requirements in space and time.


Index TermsÐLossless data compression, Burrows-Wheeler Transformation, context trees, suffix trees.
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1 INTRODUCTION AND OVERVIEW


A very interesting recent development in data compres-
sion is the Burrows-Wheeler Transformation [1]. The


idea is to permute the input sequence in such a way that
characters with a similar context are grouped together. This
property allows a locally adaptive statistical compression
scheme to achieve compression rates that are close to the
best known rates. However, the important point is that
these rates can be achieved with much less computational
effort than previous programs based on statistical modeling
techniques. Thus, data compression based on the Burrows-
Wheeler Transformation is fast and it leads to good
compression results.


So far the Burrows-Wheeler Transformation has not been
thoroughly analyzed from an information theoretic point of


view. One of the main contributions of this paper is to
provide such an analysis. Assuming that our information
source is modeled by a context tree [2], we will show that
the Burrows-Wheeler Transformation permutes the output
sequences of the source in such a way that the permutation


can be partitioned into intervals, one for each leaf of the
context tree. Due to this property of the context tree, the
subsequence of the source in each such interval is i.i.d. As a
consequence, for known context trees, a data compression
scheme based on the Burrows-Wheeler Transformation can


(in principle) achieve the same compression rates as any
other context tree-based method, but with much less space
requirement.


Based on these theoretical insights, we systematically
consider practical and engineering aspects. That is, we


describe techniques to efficiently implement a data com-


pression program based on the Burrows-Wheeler Transfor-


mation. We consider some new techniques as well as some


well-known techniques. We always carefully motivate their


applicability, possibly modify them, and show how to make


them work well in practice. This always includes the


analysis of space and time requirements. Our contributions


are as follows:


. We discuss when the run length encoding should be
applied and in which cases better not.


. We explain why the alphabet should always be
encoded and provide a new efficient alphabet
encoding technique.


. We describe how to efficiently construct the Bur-
rows-Wheeler Transformation in linear time and
space using suffix trees.


. We provide a technique to efficiently encode runs of
zeros after the move-to-front transformation.


. We describe a hierarchical model to estimate the
probability distributions required for arithmetic
encoding. Similar to other programs, probabilities
are estimated on two levels, based on some statistics.
For our application, we do not only increment
statistics, but also halve them at different speeds.
In this way, we can gradually change contexts. The
estimators we obtain are a generalization of the
k-array �-biased Dirichlet estimators [3], [4].


We have developed a data compression program that


employs these implementation techniques. It runs in O�kn�
time and requires O�n� space, where n is the length of the


input sequence and k is the alphabet size. Experimental


results show that it achieves a better compression rate than


other programs for most files of the Calgary Corpus [5] and


the Canterbury Corpus [6]. It also showed the best average


compression rate (2.32 bits/byte for the Calgary Corpus and


2.05 bits/byte for the Canterbury Corpus). For the former


corpus, the gzip-program [7] compresses 2.4 times faster
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than our program. For the latter corpus, our program was
1.5 times faster than gzip.


This paper is organized as follows: In Section 2, we
carefully establish basic notions and review some basic
properties of context trees. Section 3 is devoted to the
Burrows-Wheeler Transformation. We carefully define the
transformation and state its properties in Section 3.1.
Sections 3.2 and 3.3 show how to compute and reverse
the transformation in linear worst case time and space. In
Section 4, we consider implementation techniques. Finally,
in Section 5, we present some experimental results.


This paper extracts the core of a much wider report [8],
where we give more details on the information theoretic
background of our work (i.e., arithmetic coding [9], coding
redundancy, and Krichevsky-Trofimov estimated probabil-
ities [10], [3]), and present more examples to ease under-
standing of our techniques.


2 PRELIMINARIES


For any numbers l; r 2 IN0, �l; r� denotes the set
fi 2 IN0 : l � i � rg. Let " denote the empty sequence. For
a n y s e t S, w e d e f i n e S0 � f"g a n d
Si�1 � fas : a 2 S; s 2 Sig. S� � Si�0 Si is the set of sequences
over S. S� denotes S� n f"g. The length of a sequence s,
denoted by jsj, is the number of elements in s. If s � uvw for
some (possibly empty) sequences u; v, and w, then u is a
prefix of s, v is a factor of s, and w is a suffix of s. A prefix or
suffix of s is proper if it is different from s.
si is the ith element in the sequence s. That is, if jsj � n,


then s � s1 . . . sn, where si 2 S. sn . . . s1, denoted by sÿ1, is
the reverse of s � s1 . . . sn. If i � j, then si . . . sj is the factor of
s beginning with the ith element and ending with the jth
element. If i > j, then si . . . sj is the empty sequence. A
factor v of s begins at position i and ends at position j in s if
si . . . sj � v. To conveniently refer to the factors of a
sequence, we use the abbreviation sji for si . . . sj.


Throughout this paper, we assume that X is a finite
ordered set of size k, the alphabet. The total order on X is
denoted by � . The elements of X are characters or symbols. If
convenient, we denote the characters by their ranks w.r.t. the
order on X , i.e., we write the k characters in X as 1; . . . ; k. If
not stated otherwise, x is a sequence of length n over
alphabet X . For any alphabet X , any x 2 X�, and any a 2 X ,
occx�a� denotes the number of occurrences of a in x. We
define occx�S� �


P
a2S occx�a� for any S � X .


An X�-tree T is a finite rooted tree with edge labels from
X�. The empty X�-tree consists only of the root. For each
a 2 X , every node v in T has at most one outgoing a-edge
v!aw v0, for some v0. Let T be a X�-tree. A node in T is
branching if it has at least two outgoing edges. A leaf in T is a
node in T with no outgoing edges. An internal node in T is
either the root or a node with at least one outgoing edge.
path�v� denotes the concatenation of the edge labels on the
path from the root of T to the node v. Due to the
requirement of unique a-edges at each node of T , paths
are also unique. Therefore, we denote node v by w if and
only if w � path�v�. The node " is the root. Let w be a node
in T . jwj is the depth of w. A sequence w occurs in T if T
contains a node wu for some sequence u. words�T � denotes
the set of sequences occurring in T . An X�-tree is atomic if


every edge is labeled by a single character from X . An
X�-tree is compact if every node is the root, a leaf, or a
branching node. An atomic as well as a compact X�-tree T
is uniquely determined by words�T �.


An information or data source is a random sequence fXig,
where ÿ1 < i <1. We assume that the random sequence
is stationary and ergodic and Xi takes values from X . The
probability law defining the data source is given by


PA�xn1 � � PrfXn
1 � xn1g; n � 1: �1�


PA is the actual probability of the data source.
A context tree CT is an atomic X�-tree such that each


internal node has exactly k outgoing edges. Each leaf c is
labeled by a probability distribution PCT ��jcÿ1�. For ease of
notation, we identify a leaf c and the sequence c. A source is
a tree source if and only if there is a context tree CT such
that, for any x 2 Xn we have


PA�x� � PA�x1 . . .xl�x��
Yn


i�l�x��1


PCT �xi j �ci�ÿ1�; �2�


where 1) l�x� is the smallest integer i 2 �1; n� such that �xi1�ÿ1


is a leaf in CT and 2) for any i 2 �l�x� � 1; n�, ci is a leaf in
CT such that �ci�ÿ1 � xiÿ1


iÿjcij. ci is called the contextof xi in x
w.r.t. CT . A context tree CT satisfying (2) for any x 2 Xn is
called the model of the tree source.


Suppose that the source is a tree source modeled by a
context tree CT . PCT does only depend on a character and
its context. It does not depend on where the character or the
context occurs, i.e., the source is stationary. Hence, we have


Yn
i�l�x��1


PCT �xi j �ci�ÿ1� �
Y


c2L�CT �


Y
i2Sub�x;c�


PCT �xi j cÿ1�;


where L�CT � is the set of leaves in CT and Sub�x; c� � fi 2
�l�x� � 1; n� : cÿ1 � xiÿ1


iÿjcjg for any c 2 L�CT �. We have


�l�x� � 1; n� �
[


c2L�CT �
Sub�x; c�:


Moreover, for each c 2 L�CT �, the subsequence
fXigi2Sub�x;c� is i.i.d. Thus, the corresponding subsequence
of x can be encoded from left to right using some locally
adaptive statistical compression scheme, like arithmetic
coding.


3 THE BURROWS-WHEELER TRANSFORMATION


In this section, we introduce the Burrows-Wheeler Trans-
formation and study its properties. We explain why we
define it differently from the original transformation in [1].
We show how to construct the transformation and how to
decode it in linear time and space. The idea of the Burrows-
Wheeler Transformation is to permute the characters of the
input sequence in such a way that characters with the same
right context are grouped together. Note that most other
compression schemes consider the left contexts of the
characters in the input sequence.


We assume that x 2 X� is a sequence of length n � 1 and
$ 2 X is a character not occurring in x, the sentinel character.
We furthermore suppose that $ is the largest character in X .
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For any i 2 �1; n� 1�, let Sx�i� � xi . . .xn$ denote the ith


nonempty suffix of x$. Note that, due to the sentinel, no


Sx�i� i s a p r o p e r p r e f i x o f a n y Sx�j�. L e t


Sx�j1�; Sx�j2�; . . . ; Sx�jn�1� be the sequence of all nonempty


suffixes of x$ in lexicographic order. This gives a bijective


mapping 'x : �1; n� 1� ! �1; n� 1� defined by 'x�i� � ji. 'x
is the suffix order on x$. Note that 'x�n� 1� � n� 1 since


Sx�n� 1� � $ is the largest character in X . For convenience,


we sometimes write 'x as a list 'x�1�; 'x�2�; . . . ; 'x�n� 1�.
The Burrows-Wheeler Transformation of x is the sequence ~x


of length n� 1 such that, for any i 2 �1; n� 1�:


~xi � $ if x�i� � 1
x'x�i�ÿ1 otherwise:


�
Note that Burrows and Wheeler [1] define their transforma-


tion in a slightly different way. They consider all cyclic


shifts xixi�1 . . .xnx1 . . .xiÿ1 of x and sort them lexicogra-


phically. If one writes the cyclic shifts line by line, beginning


with the smallest one, then the last column of the resulting


matrix is the original Burrows-Wheeler Transformation.


Burrows and Wheeler later also appended a sentinel


character to x (as we do), recognizing the fact that it is


more efficient to sort nonempty suffixes than cyclic shifts


since one can stop the pairwise character comparisons as


soon as one sees the sentinel to the right of xn. Another


reason for appending the sentinel is that it prevents us from


introducing dependencies between parts of the input


sequence which are actually not present. For these two


reasons, we have given a modified definition of the


Burrows-Wheeler Transformation.


Example 1. Let X � fa; bg and x � abab. The following table


shows the nonempty suffixes of x$ in lexicographic order


and the Burrows-Wheeler Transformation of x:


Thus, ~x � $baab. To obtain the Burrows-Wheeler Trans-


formation according to the definition in [1], one sorts the


cyclic shifts of abab to obtain the transformation bbaa:


The original Burrows-Wheeler Transformation results in a


sequence of length n, while our transformation leads to a


sequence of length n� 1. This is because we include the


sentinel to mark the position corresponding to the longest


suffix Sx�1�. Burrows and Wheeler instead use an extra


integer to store that position.1


3.1 Properties


In this section, we show that the Burrows-Wheeler
Transformation permutes a tree source in such a way that
the permutation can be partitioned into intervals, one for
each leaf of the context tree. In each such interval, the
subsequence of the tree source is i.i.d. Similar observations
were previously made by other authors (e.g., [11]), but not
stated and proven formally.


Theorem 1. Suppose that the source is a tree source with a model
CT . Let r � jL�CT �j and c1; . . . ; cr be the leaves of CT in
lexicographic order. Let x 2 Xn be generated by the source and
define y � xÿ1. Let z be obtained from ey by deleting the
sentinel in ey and the characters at all positions i 2 �1; n� 1�
with 'y�i� � n� 2ÿ l�x�. Then, there are sequences
w1; . . . ; wr such that:


. z � w1 . . .wr.


. Let j 2 �1; r�, lj � jSub�x; cj�j, and Sub�x; cj� �
fi1; i2; . . . ; iljg such that Sy�n� 2ÿ i1�; Sy�n� 2ÿ
i2�; . . . ; Sy�n� 2ÿ ilj� are in lexicographic order.
Then, wj � xi1xi2 . . .xilj and the subsequence of the
tree source corresponding to wj is i.i.d.


Proof. The first l�x� characters in x do not have a context
w.r.t. CT , see (2). For this reason we delete them from ey.
In contrast, for any i 2 �l�x� � 1; n�, xi has a context in x
w.r.t. CT . Thus, for any i 2 �l�x� � 1; n�, there is a leaf c
inCT such that c i s a pref ix of the suff ix
yn�2ÿiyn�2ÿi�1 . . . yn of y. For this reason, we append the
sentinel to each of these suffixes. This gives the set
fSy�n� 2ÿ i� j i 2 �l�x� � 1; n�g of nonempty suffixes of
y$. Consider these suffixes in lexicographic order. They
correspond to the elements in ey which are also present in
z. Due to the lexicographic order, all suffixes with the
same prefix are grouped together. Partition the ordered
sequence of suffixes into factors such that each factor
consists of all suffixes having the same leaf c of the
context tree as a prefix. This also partitions z into factors
w1; . . . ; wr such that z � w1 . . .wr. Note that wj is the
empty sequence, if cj is a leaf in CT , but there is no i such
that cj is a context of xi in x w.r.t. CT . For each q 2 �1; lj�,
cj is the context of y�n�2ÿiq�ÿ1 � yn�1ÿiq � xiq in x w.r.t.
CT . Hence, cj is a prefix of Sy�n� 2ÿ iq� and, thus,


wj � y�n�2ÿi1�ÿ1y�n�2ÿi2�ÿ1 . . . y�n�2ÿilj �ÿ1


� yn�1ÿi1yn�1ÿi2 . . . yn�1ÿilj � xi1xi2 . . .xilj :


Due to the properties of context trees, it is clear that the
subsequence fXigi2Sub�x;cj� is i.i.d. tu


Example 2. Let x � 100100110 and consider a context tree
with the leaves 00, 01, and 1. Then,


n � 9;


l�x� � 1;


Sub�x; 00� � f7; 4g;
Sub�x; 01� � f6; 3g;


and


Sub�x; 1� � f8; 5; 9; 2g:
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1. However, when implementing ~x we also use an extra integer, see
Section 4.3.







We have y � xÿ1 � 011001001 and the following suffix
order 'y (the reverse contexts are shown in bold face):


Thus, ey � 110$010001. To obtain z � 11001000, we delete $


in ey and the suffix of length 1. Now, z � w1w2w3, where
w1 � x7x4, w2 � x6x3, and w3 � x8x5x9x2.


If the model CT of the tree source is known, then one can
split the sequence z (see Theorem 1) into factors w1; . . . ; wr
and encode each wj as described at the end of Section 2. In
this way, it is possible to achieve the same compression rate
as a method which does without the Burrows-Wheeler
Transformation. However, such a method requires storing,
at each leaf of CT , a statistic. In contrast, after the Burrows-
Wheeler Transformation, one only needs one statistic at any
time: When encoding wj, one only needs to store the statistic
for the context cj. Thus, the space consumption is smaller by
a factor jL�CT �j. Another important advantage of applying
the Burrows-Wheeler Transformation is that it allows us to
handle contexts of arbitrary length, while a method which
does without has to restrict the depth of the context tree
and, thus, the length of the contexts, due to space
limitations in practice.


Unfortunately, if we do not know the model of the tree
source, then we also do not know when to change from one
context to another. In Section 4.6, we will show how to
tackle this problem.


3.2 Linear Time Construction


The construction of the Burrows-Wheeler Transformation
accounts for most of the resources required by a data
compression program based on this transformation. There-
fore, we carefully consider construction methods.


In order to construct the Burrows-Wheeler Transforma-
tion ~x, one first computes the suffix order on x$. In [1], it
was observed that this can be done in linear time and space,
using the suffix tree for x. In our opinion, suffix trees
provide the method of choice for computing the suffix
order, from a theoretical as well as a practical point of view:


. There are methods to construct the suffix tree for x in
O�n� space and O�kn� time [12], [13], [14], [15]. The
suffix tree can be organized such that a simple depth
first traversal (in linear time and space) gives the
suffix order on x$. These complexities are for the
worst case. Thus, a suffix tree-based method has a
predictable running time. This is not true for other
methods [16], [17] whose worst case running time is
O�n logn�. We refer to these as nonlinear methods.


. In [18], it was recently shown that the suffix tree for
x can be computed in O�kn� time using about 10n
bytes of space in the average case. The space
consumption of a suffix tree based method is thus
comparable to the nonlinear methods which require
8n bytes [16] and 9n bytes [17].


. A careful program design leads to a suffix tree based
method which runs fast in practice.2


In the following we will briefly introduce suffix trees and
describe how they can be used to compute ~x.


The suffix tree for x, denoted by ST , is the compact
X�-tree T such that


words�T � � fw 2 X� j w is a factor of x$g:
Due to the sentinel character, there is a one-to-one
correspondence between the leaves of ST and the
nonempty suffixes of x$: Each suffix Sx�i� is represented
by the leaf Sx�i� and different leaves represent different
suffixes. This implies that ST has exactly n� 1 leaves.
Moreover, since n � 1 and x1 6� $, the root of ST is
branching. Hence, each internal node in ST is branching.
This means that there are at most n internal nodes in ST .
Each node can be represented in constant space. Since ST
has at most 2n� 1 nodes, the number of edges is bounded
by 2n. Each edge is labeled by a factor of x$. Such a label
can be represented in constant space by a pair of pointers
into x$. Hence, ST can be represented in O�n� space.


Due to the one-to-one correspondence of the leaves of ST
and the nonempty suffixes of x$, the Burrows-Wheeler
Transformation can be read from ST by a simple depth first
traversal. This processes the edges outgoing from some
branching node w in order �w , which is defined as follows:


w!au wau �w w!cv wcv() a � c:
That is, the edges are sorted according to the first character
of each edge label. Since no two edges outgoing from w
have a label beginning with the same character, �w is a
total order on the set of all edges outgoing from w. It is
obvious that such a depth first traversal visits leaf Sx�i�
before leaf Sx�j� if and only if Sx�i� � Sx�j�, where � is the
lexicographic order on X�. Thus, the suffix order
'x�1�; 'x�2�; . . . ; 'x�n� 1� on x$ is just the list of suffix
numbers encountered at the leaves during the traversal. If
one implements the suffix tree in such a way that the edges
outgoing from a branching node w are ordered by �w , then
the depth first traversal runs in linear time. No extra space
is needed, except for the output sequence ~x.


Linear time suffix constructions have a long history,
starting with the construction of Weiner [12]. Later authors
[13], [14] have developed improved algorithms. Giegerich
and Kurtz [19] reveal that these three linear time algorithms
are very closely related, although they are all based on
rather different intuitive ideas. Recently, Farach [15]
described a linear time algorithm which differs very much
from the other algorithms.
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2. Burrows and Wheeler [1] report that they have implemented a suffix
tree-based method to compute the Burrows-Wheeler Transformation.
However, they do not give enough information to substantially evaluate
how their implementation performs in comparison to the nonlinear
methods.







For our particular application, we consider McCreight's
algorithm [13] to be the best choice. This is for the following
reasons: At first, we do not need the additional virtue of
Ukkonen's algorithm (it is online) and of Farach's algorithm
(it can handle integer alphabets). Second, McCreight's
algorithm is more space efficient than Weiner's algorithm
and slightly faster than Ukkonen's method, as shown in
[20]. We have not seen any practical results of the space and
time behavior of Farach's algorithm. We note that
McCreight's algorithm also requires the sentinel character
appended to the input sequence x. Thus, it is well-suited for
computing the Burrows-Wheeler Transformation.


3.3 Decoding


Since our definition of the Burrows-Wheeler Transforma-
tion slightly differs from the original, we now present an
algorithm to decode x given ~x. The algorithm runs in O�n�
time and space and is divided into three phases. It is similar
to the algorithm given in [1].


In the first phase of the decoding algorithm, two tables
count : X ! �0; n� and offset : �1; n� 1� ! �1; n� are com-
puted. They are specified as follows:


. For any a 2 X , count�a� is the number of occurrences
of a in x$.


. For any r 2 �1; n� 1�, offset�r� is the number of
positions p 2 �1; r� such that ~xp � ~xr. That is,
offset�r� � l if and only if position r is the lth
position in ~x (from left to right) where character ~xr
occurs.


Note that ~x is just a permutation of x$. Hence, count can be
computed in one pass over ~x. In the same pass, one can also
compute offset.


In the second phase, a table base : X ! �0; n� is computed
such that, for any a 2 X ,


base�a� �
X


b2X ;b�a
count�b�:


That is, if l � base�a� � 1, then the smallest nonempty suffix
of x$ beginning with character a is the lth smallest
nonempty suffix of x$. Note that count�$� � 1 and
base�$� � n. Obviously, base can be computed in O�k� time
from count.


In the third phase, x is decoded from right to left by
computing, for any i 2 �2; n� 1�, an index ri with the
property 'x�ri� � i. That is, suffix Sx�i� is the rith smallest
nonempty suffix of x$. Now, suppose that i 2 �1; n� and ri�1


is given. Then, 'x�ri�1� � i� 1 6� 1 and, therefore, xi can be
computed from ri�1 and ~x due to the following property:


xi � xi�1ÿ1 � x'x�ri�1�ÿ1 � ~xri�1
: �3�


The following lemma shows how to compute ri from xi and
ri�1:


Lemma 1. For any i 2 �1; n� 1� the following properties hold:


ri � n� 1 if i � n� 1
base�xi� � offset�ri�1� otherwise:


�
Proof. Since 'x�n� 1� � n� 1 (see remark above), we have
rn�1 � n� 1. Now, let i 2 �1; n� and a � xi. Note that


a � ~xri�1
6� $. O n e e a s i l y o b s e r v e s t h a t


base�a� � 1 � ri � base�a� � count�a�. If Sx�i� is the only


suffix beginning with a, then count�a� � offset�ri�1� � 1.


Hence, ri � base�a� � 1 � base�a� � offset�ri�1�. Now,


suppose there is a suffix Sx�i0�, i0 2 �1; n�, i0 6� i, which


also begins with a. Then, a � xi0 � ~xri0�1
. Moreover, we


have


Sx�i� � Sx�i0� () Sx�i� 1� � Sx�i0 � 1�
() offset�ri�1� < offset�ri0�1�:


Hence, if offset�ri�1� � l, then Sx�i� is the lth


s u f f i x b e g i n n i n g w i t h a. T h i s i m p l i e s


ri � base�a� � offset�ri�1� tu
With Property (3) and Lemma 1, it is easy to show that


the following algorithm correctly decodes x from ~x in O�n�
time and space.


Algorithm 1


Input: ~x


Output: x


for all a 2 X do count�a� :� 0


for i :� 1 to n� 1 do


a:=~xi
count�a� :� count�a� � 1


offset�i� :� count�a�
base�1� :� 0


for a :� 2 to k do


base�a� :� base�aÿ 1� � count�aÿ 1�
r :� n� 1


for i :� n downto 1 do


xi :� ~xr
r :� base�xi� � offset�r�
The algorithm needs n� 1 integers for table offset, 2k


integers for tables count and base, and 2n� 1 characters to


store the input ~x and the output x. One can reuse the space


for table base when computing the partial sums in count.


This saves k integers. If an integer can be stored in 4 bytes


and a character in 1 byte, then the space consumption for


the decoding is, up to some additive constants, 4�n� k� �
2n � 6n� 4k bytes. In practice, this can be reduced to 5n�
4k bytes.


4 IMPLEMENTATION TECHNIQUES


This section is devoted to the practical and engineering


aspects. We describe techniques to efficiently implement a


data compression scheme based on the Burrows-Wheeler


Transformation. We will always motivate why we chose the


particular technique. If necessary, we modify it and show


how to make it work well in practice. The structure of this


section follows the data flow of our data compression


program, as depicted in Fig. 1. For lack of space, we do not


describe the last phase, i.e., arithmetic coding. The inter-


ested reader is referred to [9].
From now on, we assume that characters in the input


sequence can be represented by one byte. That is, X n f$g is


restricted to be a subset of the 256 character ASCII alphabet.


Of course, we use the predefined order on this alphabet to
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sort characters, suffixes, and edges. We furthermore
suppose that integers are represented by 4 bytes, i.e., 32 bits.


When we discussed the properties of the Burrows-
Wheeler Transformation in Section 3.1, we reversed the
input sequence and then applied the transformation. In this
way, we are consistent with other methods and we are able
to conveniently describe its properties. However, to save
computation time, our compression program directly
computes the Burrows-Wheeler Transformation for the
input sequence, possibly after applying the run length
encoding.


4.1 Run Length Encoding


A run in x is a nonempty factor of x which does not contain
different characters. We have implemented a simple scheme
which encodes a run of length r > 3 by 3� br=256c
characters: The first character marks that a run starts at its
position, the second character is the character the run
consists of, and the next 1� br=256c characters add up to r
if they are interpreted as one-byte integers in the range
�0; 255�. rle�x� denotes the sequence obtained by applying
the run length encoding to x.


In general, it is not a good idea to apply the run length
encoding since it disguises character dependencies. How-
ever, there are cases where it definitely should be applied:
Suppose that x contains many runs. If we apply the move-
to-front transformation (see Section 4.6) to ex, we obtain a
sequence with up to 90 percent zeros. If we instead first
apply the run length encoding to x, then this reduces the
number of zeros to about 60 percent. In the latter case, we
can achieve much better estimates for the nonzero symbols,
which in turn improves the compression rate. We consider
x to contain many runs, if jrle�x�j < 0:7n. This threshold
proved to be sensible in practice.


Thus, we apply run length encoding only if 1) there is an
ASCII character available which does not appear in x (this is
used for marking the start of a run), and 2) if jrle�x�j < 0:7n
holds. In order to decide 1) and 2), we first compute the set
of characters actually occurring in x (we need this anyway,
see Section 4.2) and determine the length of rle�x�. This can
be done in one pass over x in linear time. In case we apply
the run length encoding, we no longer need x later. So, we
can compute the encoding in place, using the space where x


is stored. Thus, our scheme runs in linear time without
using extra space.


4.2 Alphabet Encoding


Most compression programs do not encode the set of
characters which actually occur in the sequence to be
compressed. This implies that one has to deal with the
entire ASCII alphabet. For our approach, this would mean
that 1) we have more free parameters for our estimator
(which increases coding redundancy) and 2) we have to
reserve at least one extra codeword for the set of symbols
not occurring in x. Thus, one of the codewords for those
characters which actually occur in x has at least one extra
bit. This would also lead to additional redundancy.


For these reasons, we do encode the alphabet. We have
developed an alphabet encoding technique, which exploits
that an alphabet usually consists of several intervals, i.e.,
sequences of at least two consecutive characters of the
ASCII alphabet. For the alphabet encoding we need a
function � which searches for a number i in some interval
�l; r� using a binary strategy. In each step, �l; r� is divided
into two disjoint subintervals and it is output whether i
occurs in the first or the second subinterval. The function
computes a codeword whose length is increasing with i. For
each l; r 2 IN, r � l, and each i 2 �l; r�, � is specified as
follows:


��i; l; r� �
" if l � r
0 � ��i; l; rÿ j� if i � rÿ j
1 � ��i; rÿ j� 1; r� otherwise;


8><>:
where j � max


q2IN0


f2q : 2q < rÿ l� 1g:


The operator � denotes the concatenation of sequences.
Suppose the alphabet is given as a sequence of one-byte
integers 0 � a1 < . . . < ak � 255. In a first step, we reverse
this sequence and rename each character, i.e., we compute
a01; . . . ; a0k; a


0
k�1, where a0i � 255ÿ ak�1ÿi for i 2 �1; k�, and


a0k�1 � 256. We obviously have 0 � a01 < � � � < a0k�1. Let b �
0 and l � 1. Now, we proceed as follows, until b � 256.


1. If a0l � 1 � a0l�1, then let j 2 �l� 1; k� 1� be the largest
integer such that a0i � 1 � a0i�1 for all i 2 �l; jÿ 1�.
That is, �a0l; a0j� is an interval of length jÿ l� 1 � 2.


1048 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000


Fig. 1. The data flow in our compression program. The numbers refer to the sections in which the different phases are explained.







We encode the first symbol a0l of the interval by the
even number 2�a0l ÿ b� � 2 and its length jÿ l� 1 by
the number jÿ l. More precisely, we use the two
codewords ��2�a0l ÿ b� � 2; 1; 2�256ÿ b� � 1� and
��jÿ l; 1; 256ÿ a0l�. We proceed with b � a0j � 2 and
l � j� 1.


2. If a0l � 1 6� a0l�1, then the single character a0l is not
part of an interval. It is encoded by the odd
number 2�a0l ÿ b� � 1, i.e., we use the codeword
��2�a0l ÿ b� � 1; 1; 2�256ÿ b� � 1�. We proceed with
b � a0l � 2 and l � l� 1.


Note that, while b grows, the interval used for � becomes
smaller. The alphabet is encoded before x. Hence, the
estimated probability distribution is almost uniform and, in
most cases, the arithmetic coder will output a single bit for
any single bit of input. Therefore, the above alphabet
encoding technique is more efficient than a technique which
uses one bit to distinguish between Case 1 and Case 2.


4.3 Representing the Sentinel


Since x may contain up to 256 different characters, we
cannot represent the sentinel character $ by a character of
the ASCII alphabet. Instead, we implement it as an integer
sentinel, which points to a virtual character, that is larger
than any character of the ASCII alphabet. The Burrows-
Wheeler Transformation of x is thus represented by a pair
�sentinel; ~x�, where sentinel is the integer i such that
'x�i� � 1 and ~x is defined as in Section 3, except that ~xsentinel
is undefined. For the suffix tree construction and the depth
first traversal, we store x in an input buffer from index 1 to
n and let sentinel � n� 1. Our implementation takes care
that the virtual character sentinel points to is never
compared to any character of the ASCII alphabet. Such a
comparison is not necessary since we always know its
result.


4.4 Implementation of the Suffix Tree


In [18], a very space efficient representation for suffix trees
is described. It is based on linked lists and requires about
10n bytes in practice. This is a considerable improvement
over previous implementation techniques which require
about 20n bytes in practice, see [13], [16], [21], [22]. We have
implemented McCreight's suffix tree construction [13] such
that it produces the space efficient representation of [18] in
O�kn� time. To speed up the access to the successors and to
facilitate a linear time depth first traversal, the linked list of
the successors for each branching node w is ordered by �w .
Additionally, for the root we store an X -indexed table which
allows us to access the successors of the root in constant
time. This table requires just k extra integers and consider-
ably speeds up the suffix tree construction for large
alphabets.


An alternative representation of the suffix tree uses a
hash table to store the edges, as recommended in [13].
Unfortunately, this representation does not directly allow
the depth first traversal to run in linear time. As already
remarked in [23], an additional step is required to sort the
edges lexicographically. This can be done by a bucket
sorting algorithm and, thus, requires linear time. We have
implemented such an approach, but it proved to be
considerably slower than directly computing the linked list


representation. The construction of the hash table repre-
sentation of ST was about as fast as the construction of the


linked list representation of [18], but the additional sorting


step was very slow.


4.5 Depth First Traversal


Implementing a depth first traversal of the suffix tree by a


recursive procedure is straightforward. However, in the


worst case, the deepest branching node of the suffix tree can
have nÿ 1 predecessors on the path from the root (e.g., if


x � an). This means that a recursive procedure would
recurse to depth nÿ 1 and the internal stack would require


space for at least n extra integers. We cannot afford this


space and, so, we have implemented an iterative depth first
traversal procedure. During the traversal, some parts of the


suffix tree representation are not used any more. We have
organized our procedure such that it reclaims these parts


for its stack space. The iterative procedure is thus more


space efficient and it proved to be faster than a recursive
procedure. We also store x in the unused parts of the suffix


tree representation. This allows us to use the space for x to
store the output ex. The suffix tree based method to construct
~x thus takes O�kn� time and the only space it requires is the


space for the suffix tree representation.


4.6 Move-to-Front Transformation


Without actually knowing the context tree modeling the
tree source, the Burrows-Wheeler Transformation permutes


the input sequence in such a way that characters with the
same right context are grouped together. Consider the jth


context and let X j denote the set of characters in x with this


context. Because a context restricts the choice of the
characters preceding it, the size of the set X j is usually


small. Of course, X j and X j�1 may be different. However,
since the contexts are in lexicographic order, the difference


between X j and X j�1 is usually not too large, i.e., there is


local stability. Unfortunately, we cannot immediately
exploit this local stability since we do not know when the


contexts switch. For this reason, we transform the local
stability into a global one using a move-to-front transforma-


tion, see [24]. The idea of this transformation is to replace


each symbol c by the number of distinct symbols which
occurred since the last occurrence of c.


Let a1; . . . ; ak be the characters in X in lexicographic


order. For each w 2 X� and each permutation uav of


a1 . . . ak, with u; v 2 X� and a 2 X , we specify the function
mtf by the following equations:


mtf�uav; "� � " �4�


mtf�uav; aw� � juj �mtf�auv; w�: �5�
We define mtf�x� � mtf�a1 . . . ak; x� for any x 2 X�. If


x 2 Xn, then mtf�x� is a sequence of length n over the


alphabet Xmtf � �0; kÿ 1�. mtf�x� is the move-to-front trans-


formation of x.


Example 3. Let X � fa; b; c; dg and x � ccabbaaad. Then,


mtf�x� is computed by the following steps, in which the


ith application of (5) is written as uxiv ÿ!xi;juj xiuv:
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abcd ÿ!c;2 cabd ÿ!c;0 cabd


ÿ!a;1 acbd ÿ!b;2 bacd


ÿ!b;0 bacd ÿ!a;1 abcd


ÿ!a;0 abcd ÿ!a;0 abcd ÿ!d;3 dabc


Hence, 201201003 is the move-to-front transformation
of x.


One easily verifies that mtf�x� can be computed in O�kn�
time. Moreover, given mtf�x�, one can compute x with the
same complexity. Typically, occ


mtf�ex��a� monotonically
decreases while a increases. This is because the Burrows-
Wheeler Transformation typically produces runs of any
symbol, which become runs of zeros after the move-to-front
transformation.


4.7 Zero Run Transformation


0 is the dominating symbol in mtf�ex� and, so, there are
many runs of the symbol 0 (0-runs, for short). Since it is
better to not encode the 0s, but the 0-runs, we apply a
transformation to mtf�ex�, the 0-run transformation. Let X 0 �
f0a; 0bg be an alphabet such that Xmtf \ X0 � ;. We define a
function � : IN! X�0 by ��m� � w if and only if w is the mth
sequence in the lexicographic order of all nonempty
sequences over X 0. Obviously, � is bijective. Let y 2 X�mtf


and replace each maximal 0-run in y of length m, for some
m 2 IN, by the sequence ��m�. Each symbol in y different
from 0 remains unchanged. The resulting sequence,
denoted by rle0�y�, is the 0-run transformation of y and it is
a sequence over the alphabet X rle0 � �Xmtf n f0g� [ X 0. It is
easy to see that rle0�y� can be computed in O�n� time.


Note that a 0-run can have arbitrary length so that
encoding the length of a 0-run is the problem of universal
coding of integers (see e.g., [25], [26], [27], [28], [29]).
However, in our context, the problem is simplified: 1) Each
0-run in y is delimited by symbols different from 0 and
2) each encoding of a 0-run in rle0�y� consists of the
characters 0a and 0b and it is delimited by characters
different from 0a and 0b. Thus, y can uniquely be decoded
from rle0�y� in linear time. Notice that, in practice, the
global stability achieved by the move-to-front transforma-
tion is retained by the 0-run transformation.


4.8 A Hierarchical Model for Estimating and
Forgetting


We have developed a simple hierarchical model (similar to
[30]) for estimating probabilities in order to encode a
sequence over the alphabet X rle0 by arithmetic coding. The
idea is to partition X rle0 into disjoint classes. On the first
level we estimate the probability P 1


E�C� that the next
character belongs to a certain class C. On the second level,
we estimate, for a given class C, the probability P 2


E�a j C�
that a 2 C is the next character.


We define three singleton classes Cc � fcg for each
c 2 f0a; 0b; 1g � X rle0. The remaining set �2; kÿ 1� � X rle0 of
characters is split into disjoint classes Ci of 2iÿ1 consecutive
characters for i � 2; 3; . . . : Characters 2 and 3 form class C2,
characters 4-7 form class C3, etc. If we have constructed
class Cq and there are less than 2q remaining characters in
X rle0, then we add these to class Cq. Thus, the last class Cq
may consist of more than 2qÿ1 characters. Let C �
fC0a ; C0b ; C1; C2; . . . ; Cqg be the collection of all classes as


defined above. Let C�a� denote class C 2 C if and only if


a 2 C.
Let y � mtf�ex�. When we process rle0�y� from left to


right, we do not know where the contexts change or, in


other words, where we have to forget the characters


previously processed. We tackle this problem by a


technique which allows forgetting parts of the previously


processed sequence. In other words, we gradually change


contexts. The idea is to accumulate each occurrence of a


character by updating some statistics. For the first level,


there is a statistic S : C ! IN. For the second level, there are


statistics SC : C ! IN for any C 2 C. All statistics are


initialized to 1. For each processed character a, we


increment S�C�a�� by some constant l1min. If a � 2, then we


additionally increment SC�a��a� by some constant l2min. If


S�C�a�� becomes larger than some constant l1max, then we set


S�C� :� b�S�C� � 1�=2c for any C 2 C. If, additionally, a � 2


and SC�a��a� becomes larger than some constant l2max, then


we set SC�a��b� :� b�SC�a��b� � 1�=2c for any b 2 C�a�. The


choice of the constants l1min and l2min determines how fast the


statistics grow. The larger l1max and l2max, the longer is the


influence of some previously processed character. In


practice, we choose l1min � 9, l1max � 243, l2min � 2, and


l2max � 231.
Consider the statistics after processing some prefix z of


rle0�y�. Then, we define our estimators P 1
E and P 2


E as


follows:


P 1
E�C� �


S�C�P
C02C


S�C0�


P 2
E�a j C� �


SC�a�P
b2C


SC�b� :


These probability estimates can be computed for the entire


sequence rle0�y� in O�k� space and O�kn� time. If l1max and


l2max are large enough so that the statistics are never halved,


then we have S�C� � 1� l1min � occz�C� and SC�b� � 1� l2min �
occz�b� for any C 2 C and any b 2 C. Hence, we obtain


P 1
E�C� �


occz�C� � 1
l1
min


occz�X rle0� � jCj
l1
min


�6�


P 2
E�a j C� �


occz�a� � 1
l2
min


occz�C� � jCjl2min


: �7�


Thus, for a binary alphabet and limin � 2, we obtain the


Krichevsky-Trofimov estimator [3], [10]. In general, our


estimator is the �1=limin�-biased k-array Dirichlet estimator


[3], [4]. For P 2
E , the probability of a symbol that has occurred


once is as likely as the sum of the probabilities of 1� l2min


symbols that have never occurred. For P 1
E , the correspond-


ing holds. Hence, dividing limin and limax by their greatest


common divisor would lead to a different estimator. This is


already obvious from (6) and (7) in case limax is large enough.


1050 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 10, OCTOBER 2000







5 EXPERIMENTAL RESULTS


We implemented a data compression program in C. It
employs the previously described methods and implemen-
tation techniques. In a first experiment, we measured its
compression rate in bits/byte for files of the Calgary Corpus
[5] and the Canterbury Corpus3 [6] and compared the rates
to other programs, which have similar requirements in
space and time. Tables 1 and 2 show the results for the
programs pack, compress, gzip with option ±9 (see [7]), DMC
with memory usage of 16MB (see [31]), PPM with option -o3


and escape method D (see [32]), bred (see [1]), bzip2 with
option ±9 (see [33]), szip with block size 1.7MB (see [34]),
and, finally, our program which is referred to by BK98. pack
is the Unix-program using Huffman coding on a byte-by-
byte basis. compress and gzip are sequential data compres-
sion programs based on [35] and [36], respectively. DMC is
based on Dynamic Markov Compression. PPM is based on
statistical modeling and the remaining programs use the
Burrows-Wheeler Transformation. The last row of both


tables shows the total length of the files and for each
program the average compression rate. In each row, the best
compression rate is shown in a gray box. For most files, our
program achieves the best compression rate. Exceptions are
mainly small files. For both corpora, our program shows the
best average compression rate: 2.32 bits/byte for the
Calgary Corpus and 2.05 bits/byte for the Canterbury
Corpus. Some people prefer to split the Canterbury Corpus
into two groups: the group of small files (alice29, ...,
asyoulik) and the group of large files (the remaining). For
the former group, we achieve an average compression rate
of 2.14 bits/byte and, for the latter, it is 1.74 bits/byte. For
each of the large files of the Canterbury Corpus, we could
achieve even better compression rates by choosing a larger
block size. (The results presented are for the block size of
900,000 characters.) The clear winner in this comparison is
our program. There are other programs which achieve
slightly better compression rates, but they require several
orders of magnitude more compression and decompression
time. Therefore, we excluded these from the comparison.


To demonstrate the practical relevance of our program,
we measured its running time and compared it to gzip.
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3. Note that, in our experiment, we have included the large files e.coli,
bible.txt, and world192.txt, available at http://corpus.canterbury.ac.nz.


TABLE 1
Compression Rates in Bits/Byte for the Calgary Corpus


TABLE 2
Compression Rates in Bits/Byte for the Canterbury Corpus







Since gzip is available on almost every computer, these
results allow a comparison to other programs. Table 3
shows compression time (ctime) and decompression time
(dtime) for gzip and for BK98 when applied to the files of the
Calgary and the Canterbury Corpus. It also shows the space
our program requires for compressing the files of the
Calgary Corpus (cspace). The last row gives the sums of the
corresponding columns. The results were obtained on a
computer with Pentium processor (166 MHz, 32 MB RAM)
under the operating system Linux. We used the gcc
compiler, version 2.7.2.3 with the optimizing option ±O3.
Times are user times in seconds (averaged over 10 runs) as
reported by the gnu time utility. For the Calgary Corpus,
gzip achieves about 2.4 times the speed of BK98 for
compression. However, for the Canterbury Corpus, our
program is about 1.5 times faster than gzip. We confirmed
this surprising behavior on a different computer architec-
ture: On a Sun-UltraSparc (143 MHz, 64 MB RAM), our
program is 1.3 times faster than gzip when compressing the
files of the Canterbury Corpus. For both corpora, gzip
decompresses much faster than our program does. The
space requirement for our program is on average about
9.5 bytes per input character when compressing the files of
the Calgary Corpus. Similar results hold for the Canterbury
Corpus. For lack of space, we cannot present them here in
detail.
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